Certain procedures are more likely to result in a fire than others. According to a survey conducted by Dr. Roy and Lee Smith, MD, a pediatric otolaryngologist at North Shore Long Island Jewish Health System, surgical fires in otolaryngology are most commonly reported during endoscopic airway surgery, oropharyngeal surgery, cutaneous or transcutaneous surgery and tracheostomy (Am J Otolaryngol. 2011;32(2):109-114).
Explore This Issue
April 2012Safety Measures
Otolaryngologists can minimize the risk of surgical fires by tweaking certain surgical elements:
Oxygen supplementation. Dr. Wax’s patient, who was undergoing an awake tracheotomy, was receiving high flow oxygen via face mask at the time of the flash fire, despite the fact that the patient’s oxygen saturation levels were well within normal limits during the immediate pre-op period. In his Head and Neck article, Dr. Wax wrote, “We would recommend, if tolerated, the delivery of oxygen by nasal cannula either into the nasal or oral cavity … Oxygen delivery should be titrated to the patient’s oxygenation status, and the unnecessary use of high flow oxygen would be avoided” (2006;28(7):649-652).
A task force of the American Society of Anesthesiologists recommends keeping the fraction of inspired oxygen (FiO2) as low as possible and basing decisions regarding O2 delivery on patients’ actual oxygenation status as measured by pulse oximetry (Anesthesiology. 2008;108:786-801). The ECRI Institute recommends that supplemental O2 be kept at or under 30 percent when performing head, face, neck or upper chest surgery. A metal suction cannula should be used to scavenge leaking oxygen and nitrous oxide from surgical sites (Health Devices. 2009;38(10):319).
Surgical tools. Monopolar electrosurgical units and lasers are involved in over 90 percent of surgical fires (Am J Otolaryngol. 2011:32(2):109-114). The ECRI Institute recommends activation of such units only when the tip is in view and needed at the surgical site (Health Devices. 2009;38(10):319). Surgeons should refrain from activating an electrical or laser device when oxygen is being increased, and should consider blunt dissection over electrocautery in the “rare case” of unavoidable oxygen delivery to the surgical field (Head Neck. 2006;28(7):649-652). Whenever practical, consider radiofrequency ablation. In an experiment conducted by Dr. Roy, radiofrequency ablation wands were found incapable of igniting a fire, even in the presence of 100 percent oxygen (Am J Otolaryngol. 2010;31(5):356-359).
Surgical materials. Polypropylene drapes are much less likely to catch fire than cellulose-based drapes (Am J Otolaryngol. 2011:32(2):109-114). Keep light cords away from drapes; while they may not ignite polypropylene drapes, the cords still get quite hot and could burn a patient (Am J Otolaryngol. 2011:32 (2):109-114). Cuffed polyvinyl chloride endotracheal tubes (ETTs) may help decrease the risk of fire. Polyvinyl ETTs have a low flammability index; cuffed tubes prevent oxygen leakage into the surgical area (Int J Pediatr Otorhinolaryngol. 2008;72(7):1013-1021).